2F(ab + bc + ca)

3964. Proposed by George Apostolopoulos.
Let P be an arbitrary point inside a triangle ABC. Let a,b and ¢ be the distances
from P to the sides BC,AC and AB, respectively. Prove that
4
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sin*4 + sin*B + sin*C
where R denotes the circumradius of 4BC. When does the equality occur?
Solution by Arkady Alt , San Jose ,California, USA.
For representation of solution we will use common and essential notations for
sidelengths a := BC,b := CA,c := AB and for distances from P to the sides BC,AC
and 4B respectively x,y,z. So, original inequality becomes
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Let F be area of the triangle. Then ax + by + cz = 2F and applying Cauchy Inequality

to triples ( Jax, /by, Jcz ) and 1 , 1 , 1 )weobtain
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And since a2 + b? + ¢? > ab + bc + ca we obtain - > (+ e d7) =
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Noting that (a* + b* +¢*)” < 3(@* +b* +¢*) = (a2+b2+c2)2 > 3+ bt 1)

3. <ﬁ+~/7+«/5>4.

4R* ~ a* +b* + ¢*

we finally get



